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SUMMARY

A finite element technique is presented for the efficient generation of lower and upper bounds to outputs
which are linear functionals of the solutions to the incompressible Stokes equations in two space
dimensions. The finite element discretization is effected by Crouzeix–Raviart elements, the discontinuous
pressure approximation of which is central to this approach. The bounds are based upon the construction
of an augmented Lagrangian: the objective is a quadratic ‘energy’ reformulation of the desired output,
the constraints are the finite element equilibrium equations (including the incompressibility constraint),
and the inter-sub-domain continuity conditions on velocity. Appealing to the dual max–min problem for
appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output
associated with a fine-mesh discretization. The Lagrange multipliers are generated by exploiting an
associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound
technique requires the solution of only local sub-domain Stokes problems on the fine mesh. The method
is illustrated for the Stokes equations, in which the outputs of interest are the flow rate past and the lift
force on a body immersed in a channel. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: A posteriori finite element bounds; incompressible Stokes problem; Crouzeix–Raviart
element

1. INTRODUCTION

Fast solvers are essential in engineering design due to the large number of appeals to
the simulation performed within a design cycle. Indeed, the search for faster solution stra-
tegies remains a major research objective. Parallel computing, domain decomposition,
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preconditioners, higher-order schemes, and adaptive methods are just some of the successful
techniques that are being brought to bear on this important problem.

In practice, a typical design effort consists of the optimization of an objective function with
respect to selected design variables. The quantity of interest in such objective functions is
typically not the entire field solution, but rather a characteristic metric of the system, which
will be termed an ‘output’. For design applications, this output value is more relevant than the
entire field solution. Recently, a fast approach has been developed [1–4] to calculate rigorous
bounds to outputs at a fraction of the cost of a traditional computation.

This technique calculates lower and upper bounds to outputs which are linear functionals of
the solution to coercive partial differential equations (PDE); a recent extension to non-coercive
and non-linear problems is discussed in Reference [5]. The bounds are for the output
associated with a very accurate spatial discretization, which shall be called the ‘truth’ mesh; the
direct calculation of the output on this discretization would be extremely expensive. In the
present approach, the computation of the bounds nevertheless remains inexpensive, consisting
of only global solves on a coarse mesh, domain decomposition performed along the edges of
this coarse mesh, and finally, calculations of local sub-domain Neumann problems on the
‘truth’ mesh. In fact, the coarse mesh may be considered as the ‘working’ mesh utilized in a
design cycle; the bound values then serve to relate the accuracy of the design optimization to
the ‘truth’. The technique is based on the construction of an augmented Lagrangian, in which
the objective is a quadratic energy reformulation of the desired output, and the constraints are
the finite element equilibrium conditions and inter-sub-domain continuity requirements. The
bounds are then derived by evoking the dual max–min problem for appropriately chosen
candidate Lagrange multipliers.

In this paper, this technique is extended to the incompressible Stokes problem [3], of interest
in its own right but also as a precursor to the incompressible Navier–Stokes equations
[Machiels L, Peraire J, Patera AT. A posteriori finite element output bounds for the
incompressible Navier–Stokes equations; application to a natural convection problem. Journal
of Computational Physics, submitted]. The new considerations addressed are threefold. First,
the Stokes problem is itself a constrained minimization problem. Therefore, the Lagrangian
must be modified to include an additional primal variable, the pressure, and an additional
Lagrange multiplier to impose the incompressibility constraint. Second, the pressure term
contained in the new Lagrangian will not be controlled by the energy term, which may thus
lead to infinite bounds. The solution to this difficulty is the use of the Crouzeix–Raviart
element [6,7], which allows the exact elimination of the dependence of the Lagrangian on the
pressure variable through a projection technique, which, thanks to the discontinuous (and
hence decoupled) pressure space, can be effected solely through problems local to each
element. Third, higher-order velocity approximation is required in the Stokes problem to
satisfy the inf–sup condition. This requirement also necessitates higher-order hybrid flux
construction, which is developed here in a formulation similar to that described in Reference
[8]. Finally, regarding computational savings, the domain decomposition of the Stokes
problem offers even more substantial savings than the domain decomposition of elliptic
problems.

The current work has benefited from previous efforts in the a posteriori error estimation
community [8–18]. In earlier papers [1,2,4], the similarities between the present bounds
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technique and both ‘explicit’ and ‘implicit’ a posteriori error estimators for elliptic equations
have been described. Similar to earlier implicit techniques, the present bounds technique is
based on local independent sub-problem calculations. However, the bounds offer the advan-
tage of measuring the error in norms different than the energy norm. Indeed, for quantitative
confirmation of engineering design quantities, the error in the norm associated with these
outputs must be measured directly. Recent explicit error indicators for the error in linear
functional outputs have been developed [15] based on the Aubin–Nitsche duality procedure.
These techniques allow for adaptive improvement of finite element predictions for the desired
engineering output, and can also be applied to the Navier–Stokes equations. However, these
estimates are less quantitative than the present one due to the presence of constants that
cannot be precisely evaluated and thus the goal of design confirmation is less satisfactory
achieved.

For the Stokes problem, Verfürth [19] has developed implicit error estimates based on the
solution of local Stokes problems, and explicit estimators based on a suitable evaluation of the
residual of the finite element solution, which provide estimates for the error in the energy
norm. Bank and Welfred [20] successfully reconsider the implicit error estimators for the
Stokes problem. A comparison of all of these methods [21] indicates that the estimates are a
good indicator of the error, that the explicit estimator is about two times less expensive than
the implicit estimators, and that the implicit estimators require about a quarter of the
computing time needed for the solution process. It is noted that these estimators have been
developed for the mini-element discretization of the Stokes problem [22], which is based on
piecewise continuous linear velocities augmented with quadratic bubble functions and piece-
wise continuous linear pressures. The present technique is limited to the discretization of the
Stokes problem by Crouzeix–Raviart (discontinuous pressure) elements.

Less standard approaches to measuring the error have been proposed in References [23,24].
The error estimators proposed by Ladeveze et al. [23] measure the error in the constitutive law
of materials in the limit of incompressible solids. (Recall that there is a direct analogy between
an incompressible linear elastic isotropic solid in equilibrium and an incompressible Newtonian
fluid in the steady creeping limit [Patera AT, Ronquist EM. Introduction to finite element
methods. Application to Incompressible Fluid Flow and Heat Transfer, 1 (in preparation)].)
Another implicit estimator for the Stokes problem is found in Reference [24]: in this approach,
the error estimator is based on local residual problems that require only the solution of
decoupled sub-domain problems of Poisson type with Neumann data. Although this method
has the advantage of being faster than implicit methods that require the solution of local
Stokes problems, the bounds obtained are for an ‘equivalent’ energy norm, and thus not
directly relevant to validation and confirmation in engineering design.

It is remarked that most of the previous work on a posteriori Stokes error analysis is focused
on estimating the error for application to mesh adaptivity rather than directly addressing
engineering design problems. There is a relative lack of methods for validation and confirma-
tion that focus on rigorously quantifying the error in the outputs of interest. Nevertheless, the
utility of adaptive mesh technology indicates that the technique must be extended to quantify
the error locally for use in adaptive error control procedures. For elliptic PDEs, such an
extension has already been presented in Reference [25]; the generalization to the Stokes
problem, though not considered here, should be relatively straightforward.
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The outline of the remainder of the paper is as follows. Section 2 describes the model
problem and the output linear functionals that will be investigated. Section 3 presents the finite
element discretization to which the bounds technique is applied. Sections 4 and 5 describe and
prove the bounds procedure and the properties of the estimates. In Section 6, an approach to
decrease the bound gap is developed. Finally, Section 7 illustrates the technique for the Stokes
problem and associated outputs of interest to demonstrate the engineering relevance of the
technique.

2. MODEL PROBLEM

2.1. Go6erning equations

We consider the steady creeping flow of an incompressible (r=constant) Newtonian fluid
with constant dynamic viscosity m between two plates with a periodic array of rectangle
obstacles in the center. This geometry is presented in Figure 1, where (x1, x2) denotes the
co-ordinate system with corresponding unit vectors e1, e2; V is the domain and Gj, j=1, . . . , 5,
are the domain boundary segments. The flow is driven by a forcing term, which can be
interpreted as a pressure gradient DP/L in the e1-direction. The velocity and pressure
perturbations are periodic in the e1-direction.

To describe this flow we use the ‘Laplacian’ form of the incompressible Stokes equations. In
Gibbsian notation, the velocity vector u and the scalar perturbation pressure field p satisfy

−Du+9p= f, in V (1)

−9 ·u=0, in V (2)

with no-slip Dirichlet and periodic boundary conditions,

u=0 on Gi, i�{1, 3, 5} (3)

Figure 1. Computational domain: G1, G3 and G5 are homogeneous Dirichlet boundaries, G4 and G2 are
periodic boundaries.
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u�G2
=u�G4

(4)

9u�G2
=9u�G4

(5)

Here f is the volumetric force, fT= [1 0]; for convenience we set the viscosity to unity. We
also require that 	V p dA=0 for uniqueness.

The variational form of (1) and (2) is
Given f� (H−1(V))2, find u= (u1, u2)� (H0

1(V))2 and p�L0
2(V) such that

&
V

9v·9u−p9 ·v−v·f dA=0 Öv�H0
1(V)�H0

1(V) (6)

−
&

V
q9 ·u dA=0 Öq�L0

2(V) (7)

where dA is a differential area element, and

H0
1(V)={6�H1(V)�6 �G2

=6 �G4
; 6 �Gi

=0, i�{1, 3, 5}} (8)

L0
2(V)=

!
q�L2(V)�&

V
q dA=0

"
(9)

where H1(V) and L2(V) are the usual Sobolev spaces [26]. We also introduce X=
H1(V)�H1(V), Y=L2(V), X0=H0

1(V)�H0
1(V), and Y0=L0

2(V).

2.2. Output linear functionals

We assume that our output s may be expressed as a linear (or more generally, affine)
functional of the velocity components u, and a linear functional of the pressure p, i.e.
s=l(u, p)=lV(u)+lP(p) where

l: X�Y�R (10)

or

lV: X�R, lP:Y�R (11)

It is clear that l is a linear functional on the product space X×Y. On physical grounds,
lP(1)=0, since the pressure level is arbitrary, and thus must not affect the output; the
mathematical ramifications of this condition will become clear later.

Examples of possible linear functionals include the flow rate through the channel, or the lift
force on the body immersed in the fluid. The particular linear functional for the flow rate
(output s (1)) is defined as
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lV(v)=
L
V
&

V
v·e1 dA, Öv�X (12)

lP(q)=0, Öq�Y (13)

where L (=2) is the height between the plates. Note that these output functionals are bounded
for all v in X. Another important engineering output of interest (s (2)) is the lift force acting on
a body. We evaluate this force with the following functionals:

lV(v)=
&

V
9x ·9v−x · f dA, Öv�X (14)

lP(q)= −
&

V
q9 ·x dA, Öq�Y (15)

or equivalently

s (2)=
&

V
9x ·9u−p9 ·x−x · f dA (16)

where x is any continuous function in X such that x ·e2=1 on G5 and x=0 on the other
non-periodic boundaries.

The motivation behind the choice of (14) and (15) is once again to obtain bounded
functionals, since we can easily predict specific convergence properties only for lV�H−1(V)
and lP�L2(V): it is shown in Reference [3] that the functionals defined in Equations (14) and
(15) are indeed bounded. To show that we correctly reproduce the lift, we first note that it
corresponds to

s (2)=
&

V
9 ·(x ·9u)+9 ·((x ·9)u)−9 ·(px) dA−

&
V

9 ·((x ·9)u) dA (17)

By application of Gauss’ theorem, we then obtain

s (2)=
&
(V

x ·(s n̂) ds−
&

V
9 ·((x ·9)u) dA (18)

where s is the stress tensor and n̂ is the outward normal vector on the domain boundary.
Finally, we demonstrated in Reference [3] that the term 	V 9 ·((x ·9)u) dA is zero for smooth
solutions, since both the tangential and normal derivatives of the normal velocity vanish, the
latter thanks to incompressibility; from Equation (18), s (2) thus reduces to the lift. (Note that
recent work on the extension to the Navier–Stokes equations has considered the stress
formulation of the Stokes problem [Machiels et al., Journal of Computational Physics,
submitted]. This formulation incorporates more naturally the stress contributions on the
boundary.) The functionals (14) and (15) also permit the calculation of the drag force acting
on the body similarly by choosing a function x such that x ·e1=1 on G5.
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We close this section with two remarks. First, if we choose x to be an incompressible
field, then the pressure part of the functional (lP(p)) is zero. To show that this choice is
compatible with the boundary condition, we apply Gauss’ theorem to find

&
V

9 ·x dA=
&
(V

x · n̂ ds=
&

G5

x · n̂ ds=0 (19)

where the final equality obtains since G5 is a closed boundary contour and x ·e2=1 on G5.
Second, we note that Equation (19) also proves that, as required, lP(1)=0 in Equation
(15).

3. FINITE ELEMENT DISCRETIZATION

We first introduce the necessary triangulations, and the general finite element ingredients,
such as the bilinear and linear forms and function spaces, that will be required in subse-
quent sections.

3.1. Triangulations

Two different types of triangulations are required for our ‘hierarchical’ bound procedure,
the H mesh and the h mesh, where the latter is a refinement of the former. The h mesh is
the fine mesh, which serves as the ‘truth’ mesh; by ‘truth’ we indicate our assumption that
the difference between the numerical solution obtained for this fine mesh and the exact
solution is negligible. The H mesh is our working mesh, which is used in conjunction with
local Stokes problems to calculate the bounds.

As our H mesh discretization of V we take a geometrically conforming regular triangula-
tion TH, consisting of K triangles TH such that

V( = .
TH�TH

T( H (20)

We denote the set of all (open) edges g of this triangulation as E(TH), and the set of three
edges gTH

associated with each element TH as E(TH). We denote the set of interior edges as
Eint(TH), and the sets of Dirichlet edges—the edges that are part of Dirichlet boundary
segments—as ED(TH). We denote the set of N vertices of the triangulation by M(TH).

The triangulation and elemental edges are, of course, related. In particular, given an edge
gTH

in E(TH), we shall indicate the coincident edge g in E(TH) as g=E(gTH
). We next

associate with each edge g in E(TH) a unique normal n̂g such that, if g lies on (V, n̂g

coincides with the outward normal n̂ on (V. Then, for all TH in TH, and all edges gTH
in

E(TH), we define

sTH

gTH= n̂E(gTH
) · n̂gTH (21)
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where n̂gTH is the outward normal on gTH
with respect to TH. In essence, sTH

gTH is 91 on the two
‘sides’ of an edge g in E(TH).

Finally, we introduce the h mesh triangulation Th, consisting of triangles Th such that

V( = .
Th�Th

T( h (22)

We shall require that Th be a refinement of TH, in that we can express each TH in TH as

T( H= .
Th�RTH

T( h (23)

where RTH
is thus the set of h mesh elements that comprise TH. A uniform R refinement will

denote a h mesh in which RTH
consists of R2 triangles Th similar to TH.

3.2. Bilinear and linear forms

We define the bilinear and linear forms required for the Stokes problem. We first need to
define a ‘broken’ space in which no continuity is required between elements; this space serves
to define functions on the local sub-domains. In particular, we define

H�
1 (V)={6�L2(V)� 6 �TH

�H1(TH), �ÖTH�TH} (24)

and associated product spaces X*= (H�1 (V))2, XTH
= (H1(TH))2, and YTH

=L2(TH).
We now define the bilinear form associated with our operators as

a(w, 6)= %
TH�TH

aTH
(w �TH

, 6 �TH
), Ö(w, 6)� (H�1 (V))2 (25)

where for all TH in TH

aTH
(w, 6)=

&
TH

9w ·96 dA, Ö(w, 6)� (H1(TH))2 (26)

In addition, we denote

a(w, v)=a(w1, 61)+a(w2, 62), Ö(w, v)� (X*)2 (27)

and

aTH
(w, v)=aTH

(w1, 61)+aTH
(w2, 62), Ö(w, v)� (XTH

)2 (28)

Similarly,
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d(w, q)= %
TH�TH

dTH
(w �TH

, q �TH
), Ö(w, q)�H�1 (V)�L2(V) (29)

where for all TH in TH

dT H

i (w, q)=
&

TH

q9w ·ei dA, Ö(w, q)�H1(TH)�L2(V) (30)

and

dTH
(w, q)=dTH

1 (w1, q)+dTH

2 (w2, q), Ö(w, q)�XTH
�YTH

(31)

Note that a and d correspond to the Laplacian and divergence operators respectively.
We next introduce a set of ‘jump’ bilinear and linear forms required in our variational

formulation. These forms will be applied in a scalar fashion to each component of the velocity.
In particular, we define the bilinear from

b(w, t)= %
TH�TH

%
gTH
�E(TH)

sTH

gTH
&

gTH

w �TH
t �E(gTH

) ds, Ö(w, t)�H�1 (V)×Q (32)

and

b(w, t)=b(w1, t1)+b(w2, t2), Ö(w, t)�X*×Q2 (33)

where w �TH
in Equation (32) is to be interpreted as the trace of w �TH

on gTH
and Q


H−1/2(E(TH)); note that t is only defined over the edges of the triangulation. Effectively,
Equation (32) computes the moments of the jumps in w over internal edges, and the moments
of w over boundary edges.

We now introduce our linear functionals. Associated with the volumetric inhomogeneities,
we have

lN(w)= %
TH�TH

lTH

N (w�TH
), Öw�X* (34)

where for all TH in TH

lTH

N (w)=
&

TH

w·f dA, Öw�XTH
(35)

Associated with our output functional, we introduce

lO6(w)= %
TH�TH

lTH

O6 (w�TH
), Öw�X* (36)
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such that

lO6(w)=lV(w), Öw�X (37)

Similarly, we can introduce a linear functional for the pressure,

lOp
(q)= %

TH�TH

lOp
(q �TH

), Öq�Y0 (38)

such that

lOp
(q)=lP(q), Öq�Y0 (39)

Here lV( ) and lP( ) are the formal output functionals introduced in Equation (11).

3.3. Function spaces

As already indicated, we consider two different spatial discretizations: d=H and d=h, which
correspond to our ‘working’ and ‘truth’ discretizations respectively. For the Crouzeix–Raviart
approximation spaces of interest [7,27], the velocity space is given by

Xd={v�T
d
� (P2

+(Td))2, ÖTd�Td}SX0 (40)

where P2
+(Td)={P2(Td)+aTH

Pb, aTH
�R} is the space of quadratic polynomials enhanced by

a cubic ‘bubble’ function Pb over Td ; for the pressure we identify

Yd={q �T
d
�P1(Td), ÖTd�Td}SY0 (41)

We also introduce spaces of polynomial functions defined on the edges only,

Qk={t �d�Pk(g), Ög�E(TH)}SQ (42)

where k identifies the order of the polynomial over the edge g.
We now define two sub-domain local spaces. First, for the velocity, the working and truth

sub-domain local spaces are given by

UH(TH)= (P2
+(TH))2 (43)

and

Uh(TH)={v�Th
� (P2

+(Th))2, ÖTh�RTH
}SXTH

(44)

respectively, where we recall that RTH
is the set of h mesh elements that constitute TH. We also

define corresponding spaces that now include the incompressibility constraint, and define the
spaces
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Zd(TH)={v�Ud(TH)�dTH
(v, q)=0�Öq�Md(TH)} (45)

where

MH(TH)=P1(TH) (46)

and

Mh(TH)={q �TH
�P1(Th), ÖT�RTH

} (47)

are the local pressure spaces.
Finally, we can define the associated global spaces with and without incompressibility

constraint as

Vd={v�X* � v�TH
�Ud(TH)} (48)

and

Wd={v�X* � v�TH
�Zd(TH), ÖTH�TH} (49)

for d=H and d=h. In essence, Ud(TH) and Zd(TH) are Neumann spaces over each TH,
for which Vd and Wd are the corresponding global representations. Note that Zd(TH)
imposes the necessary ‘global’ incompressibility constraint on the velocity thanks to the
discontinuous pressure approximation. Recall that, for Neumann spaces, v�Vd may be
discontinuous over (TH. Figure 2 illustrates, for a simple rectangular mesh, the continuous
and discontinuous meshes associated with the function spaces XH, UH(TH) and Uh(TH).

Figure 2. Meshes corresponding to the function spaces: (left) space XH, (center) space UH(TH) and
(right) space Uh(TH).
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4. BOUND PROCEDURE

In this section we present the hierarchical procedure to calculate the bounds. The three
principal steps in this procedure are (1) calculation of the adjoint on the H mesh, (2)
calculation of the hybrid flux on the H mesh, and (3) local Stokes solves to obtain the bounds.

4.1. The H mesh adjoint calculation

First, we solve the Stokes problem (1) and (2) on the working mesh. We look for
(uH, pH)�XH×YH such that

a(w, uH)−d(w, pH)=lN(w), Öw�XH (50)

−d(uH, q)=0, Öq�YH (51)

Second, we solve for the output adjoint. We look for (c. H
9, LH

9)�XH×YH such that

a(c. H
9, w)−d(w, LH

9)= − (9lO6(w)+2a(w, uH)−lN(w)) (52)

−d(c. H
9, q)= − (9lOp

(q)), Ö(w, q)�XH×YH (53)

Note that because we require lP(1)=0 we can consider the zero-averaged space YH, since
solvability is ensured. Equivalently, Equation (53) is in fact satisfied over the larger space in
which Y0 in Equation (41) is replaced by Y. Regarding computational cost, we remark that
Equations (52) and (53) need to be solved twice, once for each bound: 9 refers to the pair of
solutions required for the lower (+ ) and upper (− ) bounds. If a direct solver is used, only
one LU factorization is required for Equations (50)–(53)—the Stokes operator is, in fact, the
same, and only the right-hand sides of the equations change.

We now define a linear functional F9(v; F, P), which represents the forcing term and the
pressure term in the stress balance equations (52); this functional is introduced mainly to
simplify the notation. In particular, for any function F in X* and P in Y0, we write

F9(v; F, P)= %
TH�TH

FTH

9 (v�TH
; F, P), Öv�X* (54)

where for all TH in TH,

FTH

9 (v�TH
; F, P)=9lTH

O6 (v)+aTH
(F�TH

, v)−lTH

N (v)−dTH
(v, P) (55)

We can now view the stress balance equations (52) as

2a(w, uH)= −F9(w; c. H
9, LH

9) (56)

We can also introduce a second notation in which to re-express (56), i.e.
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B9(v, uH)=0, Öv�XH (57)

Here, for any function G in X*,

B9(v, G)= %
TH�TH

BTH

9 (v�TH
, G), Öw�X* (58)

where for all TH in TH,

BTH

9 (w, G)=2aTH
(w, G�TH

)+FTH

9 (w; c. H
9, LH

9), Öw�XTH
(59)

4.2. The H mesh hybrid flux calculation

The hybrid flux will appear in our Lagrangian as a Lagrange multiplier that enforces the
sub-domain continuity constraints. Recall that, for the Crouzeix–Raviart elements, we only
need to impose continuity for the velocity components. The procedure here is to calculate the
hybrid flux by appealing to the ‘broken’ space. To start, we have

b(v, y9)=B9(v, uH), Öv�VH (60)

i.e. for all TH in TH,

%
gTH
�E(TH)

sTH

gTH
&

gTH

v·y9 �E(gTH
) ds=BTH

9 (v, uH), Öv�UH(TH) (61)

In Reference [3] we presented two different approaches to approximate the hybrid flux for
quadratic elements based on earlier work for energy norm estimators [8,16]. These techniques
are based on an initial approximation, which is then corrected with a P1 term to ensure
solvability. In addition, a higher-order (quadratic) term is included to improve accuracy; the
latter is not required, but should give sharper bounds. We describe here only the most
promising approach of the two, in which the initial approximation is a P0 approximation. For
reasons of simplicity we will present the lower (+ ) bound hybrid flux calculation; the upper
bound proceeds in a similar fashion.

We first introduce ȳg
+ � (Q0)2, ŷg

+ � (Q1)2 and ỹg
+ � (Q2)2, which are different polynomial edge

functions used in the hybrid flux approximation, y9= ȳg
9+ ŷg

9+ ỹg
9. The constant contribu-

tion to the hybrid flux ȳg
+ does not present any new subtleties; it is obtained as in Reference

[2]. The linear correction ŷg
+ is defined for each component by

ŷ g
+ �g=an

gun
g(x)+am

g um
g (x) (62)

where an
g and am

g are real coefficients to be determined, and (un
g(x), um

g (x)) are linear edge
functions constructed to be orthogonal to (8TH

n �g, 8TH

m �g) [13,16]. The function 8TH

n is the
restriction of the linear basis function associated with vertex n of TH to element TH. For the
quadratic approximation of the hybrid flux we define

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 823–849



M. PARASCHIVOIU AND A. T. PATERA836

ỹ g
+ =bgrg (63)

where rg : g�R is the quadratic function uniquely defined by the conditions

&
g

rg8TH

n ds=0 (64)

and

&
g

rg
2 ds= �g � (65)

where n in Equation (64) refers to either of the two vertices of g. We also introduce 8̃TH

p such
that the function 8TH

n and 8̃TH

p associated with TH span P2(TH).
Given ỹ g

+, we calculate the coefficients or an
g and thereafter ŷ g

+ following the procedure in
Reference [2]. To wit, we solve

sTH

gTH
&

g

8TH

n (ȳ g
+ + ŷ g

+ + ỹ g
+) ds=BTH

+ (8TH

+ , uH) (66)

in which we exploit the fact that

&
g

8TH

n (ȳ g
+ + ŷ g

+ + ỹ g
+) ds=

&
g

8TH

n (ȳ g
+ +an

gun
g(x)+am

g um
g (x)+bgrg) ds=

�1
2

ȳ g
+ +an

g
��g �
(67)

since the quadratic function rg is orthogonal to the linear functions 8TH

n . To calculate ỹ g
+ we

then follow the procedure in [8], i.e. we solve

sTH

gTH
&

g

8̃TH

p (ȳ g
+ + ŷ g

+ + ỹ g
+) ds=BTH

+ (8̃TH

p , uH) (68)

where ȳ g
+ and ŷ g

+ are now known. Details, in particular as regards solvability, may be found
in Reference [3].

To summarize, we first evaluate the non-conforming approximation, ȳ g
+, to the hybrid flux,

as in Reference [2]. However, this approximation does not lead to solvability of the equilibrium
equation (60). To ensure solvability, we solve N local systems to determine the an

g constants of
the linear contribution to ŷ g

+ (62). Finally, we look for a quadratic contribution that leads to
(68). Alternative approaches are described in Reference [3].

4.3. The h mesh sub-domain Neumann problem

Before we solve the sub-domain problem, we must compute an adjoint c. h
9 on the h mesh. For

sharp bounds, c. h
9 should be close to c. H

9. In addition, the adjoint c. h
9 must be continuous for
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all TH in TH to be a valid Lagrange multiplier. Finally, c. h
9 must satisfy an equilibration

equation if we are to obtain meaningful bounds—as we will discuss below. Therefore, for all
TH in TH, we look for c. h

9�Uh
D(TH) such that

aTH
(v, c. h

9−c. H
9)−dTH

(v, p̃h)=0, Öv�Uh(TH) (69)

−dTH
(c. h
9, q)= − (9lTH

Op
(q)), Öq�Mh(TH) (70)

where

Uh
D(TH)={v�TH

�Uh(TH)� v�T
H
=c. H

9 �gTH
, Ög�E(TH)} (71)

In effect, Equation (71) is simply the affine manifold which imposes onto c. h
9 the H mesh

adjoint values c. H
9 on the boundary of TH ; it is important to note that, on (TH and (Th, the

bubble function vanishes, so that the trace of c. H
9 on (TH is in Uh(TH)—the h mesh

sub-domain space. In fact, Equations (69) and (70) indicate that c. h
9 is an incompressible H1

semi-norm projection of c. H
9 onto the fine mesh; p̃h in Equation (69) is a ‘dummy’ variable

(Lagrange multiplier), which is not used in the remainder of this work. Note that, if q=1 in
Equation (70), then since 1 is in MH(TH)

−dTH
(c. h
9, 1)= −

&
(V

c. H
9 · n̂gTH ds= −dTH

(c. H
9, 1)= − (9lTH

Op
(1)) (72)

from Equation (53); recall that n̂gT H is the outward normal on gTH
with respect to TH The

system (69) and (70) is thus solvable; note the issue of solvability does not arise in (69) because
we do not have any Neumann problems—all boundaries are Dirichlet.

For the local sub-domain problem, we now look for ûTH

9 �Uh(TH), for all TH in TH, such
that

2aTH
(w, ûTH

9 )−dTH
(w, p̄TH

9 )= −
�
9lTH

O6 (w)−lTH

N (w)+aTH
(c. h
9, w)−dTH

(w, Lh
9)

− %
gTH�E(TH )

sTH

gTH
&

gTH

w·y9 �E(gTH
) ds

�
, Öw�Uh(TH) (73)

−dTH
(ûTH

9 , q)=0, Öq�Mh(TH) (74)

To verify solvability, we take v=1 in (61). The right-hand-side of (73) then vanishes because
1�UH(TH)�Uh(TH). Note that the construction of c. h

9 is also essential: the equilibrium
equation (60) includes c. H

9, but in (73) c. h
9 appears; however, since a(c. h

9, 1)=a(c. H
9, 1), we

are still able to ensure solvability.
In a more compact notation, we can introduce two functions U. h

9�Wh and P( h
9�Mh such

that U. h
9 �TH

= ûTH

9 and P( h
9 �TH

= p̄TH

9 , ÖTH�TH, where U. h
9 satisfies

2a(w, U. h
9)−d(w, P( h

9)= −F9(w; c. h
9, LH

9)+b(w, y9), Öw�Vh (75)
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−d(U. h
9, q)=0, Öq�Mh (76)

We make several remarks. First, we note that the K systems for ûTH

9 are completely decoupled,
leading to very efficient inversion compared with the original h mesh problem of Equations (6)
and (7). This cost reduction is considerable, especially when decoupling the Stokes problem,
which is a larger system with a larger bandwidth than an elliptic problem. An additional
advantage is that each of these sub-domain problems may be easily solved in parallel. Second,
an additional constraint is introduced on the sub-domain problems to impose the local
incompressibility constraint on U. h

9. As we will see, this is not required by the bound theory,
however, we expect that it improves the accuracy of the bounds. By imposing the incompress-
ibility constraint, which is more expensive, we look for the solutions to local Stokes problems
instead of local Poisson problems. We have not yet investigated the latter. Third, note that we
solve two (one for each bound) local Stokes problem to project the adjoint onto the h mesh.
The cost of this additional solve is small, especially if we use direct solvers, in which case only
one LU decomposition is necessary for both the adjoint and the subsequent velocity
calculations.

Finally, we can now calculate the bounds as

(sh)LB(H)=h+ (77)

and

(sh)UB(H)= −h− (78)

where

h9= −a(U. h
9, U. h

9)−lN(c. h
9) (79)

Note that the upper bound can be interpreted as the lower bound in which the output is
multiplied by −1.

5. PROOF OF BOUNDING PROPERTIES

The proof of the bounding properties of h9 is based on classical quadratic duality theory
[1,28]. The key feature of this approach is the construction of a Lagrangian with a quadratic
objective function and linear constraints such that, at stationarity, this Lagrangian evaluates to
the output of interest. We first derive an ‘energy’ equality that provides the stabilization in our
Lagrangian. We take the test function in Equations (50) and (51) to be the solution (uh

9, ph),
which yields

a(uh, uh)−d(uh, ph)=lN(uh) (80)

d(uh, q)=0, Öq�Yh (81)
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Note that (80) and (81) reduce to a quadratic form in uh—a(uh, uh)−lN(uh)=0—because the
term d(uh, ph) is zero. For inhomogeneous Dirichlet boundary conditions, a boundary function
would be introduced, as in Reference [2], to directly obtain boundary conditions for the
adjoint; the error formulation of References [5,16] can also be pursued.

By adding the output functional to the quadratic form (80) we obtain a function that
reduces to sh=lO6(uh)+lOp

(ph) when (v=uh, q=ph). More precisely, we have

9sh= min
(v,q)�S

(lO6(v)9lOp
(q)+a(v, v)−lN(v)) (82)

where

S=

Á
Ã
Í
Ã
Ä

(v, q)�Wh×Yh

ÃÃ
Ã
ÃÃ

a(m, v)−d(m, q)=lN(m), Öm�Xh

d(v, l)=0, Öl�Yh

b(v, t)=0, Öt�Q2

Â
Ã
Ì
Ã
Å

(83)

The set of functions S is a singleton (v=uh, q=ph) equivalent to the solution of the Stokes
equations (50) and (51). Note, we could replace Wh with Vh, which would yield decoupled
Poisson rather than Stokes sub-problems, as described in the previous section; we consider the
arguably more accurate choice Wh.

From a mathematical point of view, the solution to (82) is equivalent to finding the
saddlepoint of a Lagrangian, L9: (v, q, m, l, t)�Wh×Yh×Xh×Yh×Q2

L9(v, q, m, l, t)=9lO6(v)9lOp
(q)+a(v, v)−lN(v)+a(m, v)−d(m, q)−lN(m)−d(v, l)

−b(v, t) (84)

Inserting F9(v; m, l) from (55) and regrouping terms so that subsequent simplifications are
more obvious, we can rewrite (84) as

L9(v, q, m, l, t)= [−a(v, v)−lN(m)]+ [2a(v, v)+F9(v; m, l)−b(v, t)]

+ [−d(m, q)9lOp
(q)] (85)

Our first goal is to show that this Lagrangian evaluates to h9 of (79) for (v, q, m, l, t)=
(U. h
9, · , c. h

9, Lh
9, y9), where ‘ · ’ represents any value in Yh. Proceeding, we obtain

L9(U. h
9, · , c. h

9, Lh
9, y9)= [−a(U. h

9, U. h
9)−lN(c. h

9)]+ [2a(U. h
9, U. h

9)

+F9(U. h
9; c. h

9, Lh
9)−b(U. h

9, y9)]+ [−d(c. h
9, · )9lOp

( · )] (86)

We immediately see that the first bracket of (86) equals h9, where we recall that

h9= −a(U. h
9, U. h

9)−lN(c. h
9) (87)
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It remains to show that all the other terms in (86) vanish. We observe that the second bracket
in (86) is, from (75), d(U. h

9, P( h
9), which is zero thanks to (76). Finally, the last bracket in (86)

vanishes due to the construction of the adjoint, since we have imposed −d(c. h
9, · )9lOp

( · )=
0 in (70).

We conclude that

h9=L9(U. h
9, · , c. h

9, Lh
9, y9) (88)

It then follows from the classical quadratic linear duality theory that

h959sh or h+5sh5−h− (89)

if

L9(U. h
9, · , c. h

9, Lh
9, y9)= min

v�Wh
L9(v, · , c. h

9, Lh
9, y9) (90)

To demonstrate (90), we expand our Lagrangian (84) for v=U. h
9+w, m=c. h

9, l=Lh
9, t=

y9, to obtain

L9(U. h
9+w, · , c. h

9, Lh
9, y9)

=L9(U. h
9, · , c. h

9, Lh
9, y9)+ [2a(w, U. h

9)+F9(w; c. h
9, Lh

9)−b(w, y9)]

+ [−d(c. h
9, · )9lOp

( · )]+a(w, w), Öw�Wh (91)

We observe that all the terms linear in w (the first bracket) reduce to d(w, P( h
9) from (75),

which vanishes since w�Wh¦Vh is incompressible. The terms −d(c. h
9, · )9lOp

( · ) (the
second bracket) also vanish thanks to the construction of the adjoint (69) and (70). The
remaining term a(w, w) is positive semi-definite, which thus proves (90). Note that it is the
‘energy’ equality that allows us to consider non-exact Lagrange multipliers and still provide
non-infinite bounds.

More precisely, to avoid meaningless bounds we need to verify that when minimizing our
augmented Lagrangian we do not obtain −�. To this end, two main concerns must be
addressed. First, solvability of (70)–(76) is essential. Without solvability the terms on the
right-hand side could tend to infinity as the test function tends to infinity. Second, equilibra-
tion between −d(c. h

9, q) and 9lOp
(q) is also essential, because these terms are not controlled

by any quadratic stabilization. Because both of the above conditions are satisfied we are
guaranteed non-infinite bounds. However, there is nothing in the presentation that proves that
the bounds should be sharp. For the moment, we can suggest that, since CH

9, LH
9 and y9 are

the saddlepoints of the H mesh approximation to our Lagrangian, they should thus be close
enough to the h mesh saddlepoint to yield good bounds.

6. OPTIMAL STABILIZATION PARAMETER

In this section we present a procedure by which to improve the sharpness of the bounds. To
this end, we introduce a positive real number k to scale our output s, and we look for the
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bounds to this scaled output. We then provide a procedure by which to calculate the optimal
k, i.e. the k that will yield the sharpest bounds; to be more precise, we maximize our lower
bound and minimize our upper bound. A different but equivalent approach in which we scale
the entire energy equality (80)–(81) is presented in R1 in References [1,29].

Our strategy to find the optimal k is to write all variables as linear functions in k, and then
derive the bounds as a function of k. This procedure does not change the bounding theory and
our bounds remain rigorous indeed, our choices of Lagrange candidates are still valid even if
the adjoint and the hybrid flux are decomposed into different contributions. The key is that
these candidates must remain in the appropriate spaces, so some attention must be given to the
boundary conditions.

First, we decompose c. H
9 and LH

9 as

c. H
9=c. H

09+kc. H
19 (92)

LH
9=LH

09+kLH
19 (93)

where c. H
09�XH satisfies

a(c. H
09, w)−d(w, LH

09)= − (2a(w, uH)−lN(w)), Öw�XH (94)

−d(c. H
09, q)=0, Öq�YH (95)

and c. H
19�XH satisfies

a(c. H
19, w)−d(w, LH

19)= − (9lO6(w)), Öw�XH (96)

−d(c. H
19, q)= − (9lOp

(q)), Öq�YH (97)

Note that uH, the solution to (50), only appears on the right-hand side of the equation. In fact,
in both equations the operator is identical, and we can take advantage of this fact for direct
solvers. We now write c. h

9 as

c. h
9=c. h

09+kc. h
19 (98)

which needs to satisfy, for each element TH on the H mesh,

aTH
(w, c. h

09−c. H
09)−dTH

(w, p̃ h
0)=0, Öw�XH (99)

−dTH
(c. h

09, q)=0, Öq�YH (100)

and

aTH
(w, c. h

19−c. H
19)−dTH

(w, p̃ h
1)=0, Öw�XH (101)
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−dTH
(c. h

19, q)= − (9lTH

Op
(q)), Öq�YH (102)

Based on similar arguments as in Section 5, the boundary conditions for c. h
09−c. H

09 and
c. h

19−c. h
19 are homogeneous Dirichlet. These two sets of equations are similar to (69)–(70)

in all respects; we force continuity of the adjoint across the sub-domain boundaries, and we
impose an incompressibility constraint in the interior of each sub-domain.

We now present the k decomposition of the hybrid flux. First, we need to define two
functions F09(6 ; F, P) and F19(6 ; F, P). In particular, for any two functions F and P in
X* and Y, we define for all v�X*

F09(v; F, P)= %
TH�TH

FTH

09(v�TH
; F, P) (103)

F19(v; F, P)= %
TH�TH

FTH

19(v�TH
; F, P) (104)

where

FTH

09(v; F, P)=aTH
(F, v)−dTH

(v, P)−lTH

N (v) (105)

FTH

19(v; F, P)=aTH
(F, v)−dTH

(v, P)9lTH

O6 (v) (106)

Finally, we introduce

y9=y09+ky19 (107)

As in Section 4.2, we solve for all TH in TH the following equations:

%
gTH
�E(TH)

sTH

gTH
&

gTH

v·y09 �E(gTH
) ds=2aTH

(v, uH
9)−FTH

09(v; c. H
09, LH

09), Öv�UH(TH)

(108)

%
gTH
�E(TH)

sTH

gTH
&

gTH

v·y19 �E(gTH
) ds= −FTH

19(v; c. H
19, LH

19), Öv�UH(TH) (109)

We can now solve the h mesh problems,

2a(w, ûh
09)−d(w, P. h

09)= −F09(w; c. h
09, Lh

09)+b(w, y09) (110)

−d(ûh
09, q)=0, Ö(w, q)�XH×YH (111)

and

2a(w, ûh
19)−d(w, P. h

19)= −F19(w; c. h
19, Lh

19)+b(w, y19) (112)
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−d(ûh
19, q)=0, Ö(w, q)�XH×YH (113)

We will not address the solvability of (110)–(111) and (112)–(113) as it follows our usual proof
(see Section 4.3).

Using the same derivation as in Equation (79), the bounds can be expressed as

h9(k)= −
1
k

(a(ûh
09+k ûh

19, ûh
09+k ûh

19)+lN(c. h
09+kc. h

19))

= −
1
k

(a(ûh
09, ûh

09)+lN(c. h
09)) (114)

−2a(ûh
09, ûh

19)−lN(c. h
19)−ka(ûh

19, ûh
19) (115)

Differentiating with respect to k, we find

hk
9(k)=

1
k2 (a(ûh

09, ûh
09)+lN(c. h

09))−a(ûh
19, ûh

19) (116)

hkk
9 (k)= −

2
k3 (a(ûh

09, ûh
09)+lN(c. h

09)) (117)

To optimize our bounds we require hk
9(k*9)=0, which yields

k*9=
'a(ûh

09, ûh
09)+lN(c. h

09)
a(ûh

19, ûh
19)

(118)

To prove that k is a maximum, we proceed as follows: we first recall that h9 is a lower bound
to 9sh. It follows that the terms in 1/k must be positive so that our lower bound does not go
to +� as k decreases. These same terms also enter in the second derivative (and the radical)
making the second derivative negative for all positive values of k (and the argument of the radical
positive). The arguments are somewhat more transparent with the error formulation of Reference
[16].

We will now make some remarks concerning computational cost. We wish to show that we
need only two sub-domain solves rather than four to calculate the bounds for the optimal
stabilization parameter k*. It is obvious that the numerator is the same in both the upper and
the lower bound calculations because it does not depend on the output functional. In addition,
we can show from (96)–(97) and (101)–(102), that c. h

1+ = −c. h
1−. Furthermore, we note that

the right-hand side of (112) only differs by a sign when replacing c. h
1+ by −c. h

1−, which leads
to ûh

1+ = − ûh
1−. Finally, because a( , ) is a symmetric positive semi-definite form, a(ûh

1+, ûh
1+)=

a(ûh
1−, ûh

1−), and thus the denominator of (118) is the same for both the upper and the lower
bounds. From the above arguments, we obtain that k*+ =k*−�k*.

It follows that, in fact, we only need to perform two sub-domain solves to compute our
optimized bounds, just as in the non-optimized case. For clarity we summarize the relevant
identities ûh

0+ = ûh
0−, ûh

1+ = − ûh
1−, c. h

0+ =c. h
0−, and c. h

1+ = −c. h
1−. These identities also lead

to an interesting property that the average of the bounds is not affected by k. The average of
the bounds is given by
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1
2

(h+ −h−)= −
1

2k
(a(ûh

0+, ûh
0+)+lN(c. h

0+)−a(ûh
0−, ûh

0−)−lN(c. h
0−))−a(ûh

0+, ûh
1+)

+a(ûh
0−, ûh

1−)−
1
2

lN(c. h
1+)+

1
2

lN(c. h
1−)−

k

2
(a(ûh

1+, ûh
1+)−a(ûh

1−, ûh
1−))

(119)

From the above identities we observe that the terms in 1/(2k) and k/2 all vanish. After
replacing the remaining ûh

1− and c. h
1− by − ûh

1+ and −c. h
1− respectively we obtain

1
2

(h+ −h−)= −2a(ûh
1+, ûh

1+)−lN(c. h
1+) (120)

thus proving the desired result.

7. NUMERICAL RESULTS

We present results for the Stokes problem for a periodic domain (Figure 1) in which the flow
is driven by a pressure gradient. The velocity field solution of this problem is shown in Figure
3 for the coarsest mesh T(H 0,1). The triangulations investigated, T(H 0,R), are uniform

Figure 3. Velocity field solution for TH=T(H 0,1).
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refinements of the coarsest mesh T(H 0,1) shown in Figure 4(top). The H meshes, TH,
correspond to T(H 0,R), R=1, 2, 3, 4, 6, and the truth h mesh corresponds to Th=T(H 0,12); Th

is shown in Figure 4(bottom). Note that, for all the refinement values of R considered, we

Figure 4. (top) Coarsest working mesh TH=T(H 0,1), and (bottom) truth mesh TH=T(H 0,12).
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satisfy XH¦Xh, as required by the theory. We shall denote the effective working approxima-
tion element size associated with triangulation TH=T(H 0,1) by H
1/R.

Two outputs are investigated, as defined in (10): the flow rate, s (1), and the lift force on the
body, s (2). The test function x(�H1(V)�H1(V)) used in the lift functionals (14) and (15) is
defined to be continuous and piecewise linear over TH in T(H 0,1) with

x=0, in V¯V%

x=0, on Gi, i={1, 2, 3, 4}

x ·e2=1, on G5

where V% contains all the elements of T(H 0,1) that have an edge on G5. Another choice of
(incompressible) x is presented in [3], which yields almost identical results but at a higher
computational cost.

The objective here is to rigorously bound the output associated with T(H 0,12). To this end,
different H meshes can be exploited. Clearly, the cost of the bound calculations increases as
finer H meshes are used, i.e. as R increases for T(H 0,R). However, finer H meshes also lead to
sharper bounds because the adjoint and the hybrid flux are more accurately approximated. In
fact, an adaptive procedure similar to Reference [25] could be developed to efficiently produce
a H mesh and associated bound gap within a desired value.

We can easily relate our hierarchical mesh procedure for calculation of the bounds to
engineering design procedures based upon a hierarchy of numerical approximations. In fact,
the first discretization, here the H mesh, is a ‘working’ coarse mesh approximation, which is
relatively inexpensive, but which generates solutions and associated outputs sH that are deemed
sufficiently accurate for the purposes of ‘preliminary’ analysis. The second discretization, here
the h mesh, is a ‘truth’ mesh which produces a solution and associated outputs sh for which
�sh−s � is assumed negligibly small. The h-discretization serves to verify the prediction of the
H-discretization, either prior to design, as in a validated surrogates framework [30], during
design, as in the trust-region optimization techniques [31], or after design, as final confirmation
of the anticipated performance. Our bound procedure provides reliability of the truth mesh but
at much lower cost.

We plot in Figure 5(top and bottom) (sh)UB* /sh, (sh)pre* /sh, (sh)LB* /sh, and sH/sh as a function of
(effective) H for, respectively, s (1) (flow rate), and s (2) (lift force). The average of the lower and
upper bounds is denoted by (sh)pre* . For the coarsest mesh, we observe that the upper bound
for both outputs is within +15%. The accuracy of the lower bound depends on the output
considered. For the flow rate output, s (1), the lower bound is within −5% and almost equal
to sH ; in fact, in this case we have a weak compliance. (By compliance we refer to the property
that the output calculated on the H mesh is equal to the lower bound, (sh)LB=h+ =sH, which
occurs when (i) the inhomogeneity of the weak form equals the output functional, (ii) the
boundary conditions are homogeneous Dirichlet, and (iii) the operator of the problem
considered is symmetric [3].) For s (2), the lower bound is within −20% of sh calculated on
T(H 0,1) We also observe that, for a refinement of two, both upper and lower bounds are well
within +10%. Recall that one of the main advantage of the bounds is the certainty that sh
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Figure 5. Plots of (sh)UB* /sh, (sh)pre* /sh, (sh)LB* /sh, and sH/sh as a function of (effective) H for (top) s (1), the
flow rate and (bottom) s (2), the lift force.

does indeed lie within the calculated values. In practice, the working mesh should be
constructed sufficiently accurate (considerably more so than our T(H 0,1) used here).

In Figure 6(top) and (bottom) we plot eUB* = log�(sh)UB* −sh �, eLB* = log�(sh)LB* −sh �, epre* =
log�(sh)pre* −sh �, and eH= log�sH−sh � as a function of log H for s (1) and s (2) respectively. For
s (1), (sh)LB* and sH appear to converge to sh as O(H1.5) as H�h. We would expect, for a smooth
solution, that sH will converge at least as fast as O(H2), and no doubt faster. The corner
singularities are most probably responsible for sH converging to sh only as O(H1.5). Note that
from our ‘weak’ compliance analysis in [3] the hybrid fluxes are zero, and we therefore rule out
any error contribution from that calculation for the lower bound; as expected, we obtain the
same convergence rates for both (sh)LB* and sH. Now, considering the convergence of (sh)UB*
(still for the flow rate output), we note that we achieve only O(H1.3) compared with O(H1.5)
for (sh)LB* . We believe that this may be caused by the hybrid flux approximation—unfortu-
nately preliminary work with a P1 initial approximation did not indicate any improvements [3].
Considering now s (2), the quantities (sh)UB* , (sh)LB* and (sh)pre* all converge at the previous lower
rate, O(H1.3), and sH converges at the same rate as for the flow rate, O(H1.5). The same
comments regarding the hybrid flux and the singularity can also be evoked for the lift output,
s (2), and no doubt explain the convergence rate results.

The bounds presented here reflect the use of the scaling parameter k described in Section 6.
For the flow rate output, k=1 is optimal for all H (again due to the compliance result), while
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Figure 6. Plots of eUB* = log�(sh)UB* −sh �, eLB* = log�(sh)LB* −sh �, epre* = log�(sh)pre* −sh �, and eH= log�sH−
sh � as a function of log H for (top) s (1) the flow rate and (bottom) s (2) the lift force.

for the lift output k* tends to 0.0886 as R increases. Note that the choice of x does not
influence significantly the accuracy and convergence of the bounds, as shown in Reference [3].

We conclude with a few suggestions to improve the bounds for outputs of the Stokes
problem. First, closer examination of the hybrid flux calculations is warranted; in particular,
investigation of a P1 initial approximation of the hybrid flux should improve the convergence
rate of the bounds. Second, implementing the bounds technique within the stress formulation
of the Stokes equations will allow for cleaner derivation of the lift linear functional. Indeed,
the stress formulation has been chosen for the Navier–Stokes extension [Machiels et al.,
submitted]. And finally, additional application to more relevant engineering problems will be
presented in future papers.
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